Week 1

Problem of the Day May

Day 1	What is 6 ²⁴ / ₁₀₀ written as a decimal?
Day 2	What is an right angle?
Day 3	How do you subtract 1 $\frac{1}{2}$ - $\frac{2}{4}$? What is the answer?
Day 4	List the factors of 64.
Day 5	James' hens laid 96 eggs. How many dozen can he sell at the farmers market?

Week 2

Problem of the Day May

Dαy 1	Rename $\frac{38}{7}$ as an mixed number.
Day 2	Elise spent $\frac{5}{9}$ hour each day building a shed for six days. How much time did she spend altogether?
Day 3	Compare with <, >, or =. $\frac{9}{10}$ $\frac{8}{9}$
Day 4	Find and continue the pattern: 5.4, 6.3, 7.2,
Day 5	How do you find the area of a triangle?

Problem of the Day May

Week 3

Day 1	What strategy will you use to solve 63 × 18? Solve.
Day 2	What strategy will you use to solve 47 ÷ 10? Solve.
Day 3	Order from least to greatest: 2.6, 3.9 1.99, 0.60, 1.59
Day 4	Decompose 3 $\frac{1}{4}$ in two ways.
Day 5	Miguel spent 0.3 of an hour computer programming each day for 7 days. How much time did he spend altogether?

Problem of the Day May

Week 4

٦

Dαy 1	Draw a picture to represent 3 × $\frac{1}{5}$. Solve.	
Day 2	Compare with <, >, or =. 13 × 7	18 × 5
Day 3	What is the perimeter of this rectangle?	17 m 108 m
Day 4	What is the area of this rectangle?	26 m 23 m
Day 5	Give an example of a ray in the real world.	

Problem of the Day May Answer Key

Week 1

Day 1: 6.24

Day 2: A right angle is an angle that is equal to ninety degrees.

Day 3: Change the denominators into a common denominator, 4, and write equivalent fractions with the new denominator. Then, subtract the numerators and keep the denominator. 1

Day 4: 1, 2, 4, 8, 16, 32, 64 Day 5: 8 dozen Week 2 Day 1: $5\frac{3}{7}$ Day 2: $\frac{30}{9}$ or $3\frac{3}{9}$ or $3\frac{1}{3}$ hours Day 3: $\frac{9}{10}$ > $\frac{8}{9}$ Day 4: 5.4, 6.3, 7.2, 8.1, 9.0, 9.9, 10.8 Day 5: Multiply 1/2 x base x height (1/2 b × h). Week 3

Day 1: Multiply 10 × 63, then multiply 8 × 63. Add the products. 1,134

Day 2: Put 47 in the division house and 10 outside. The remainder is the numerator for the fraction. 4 $\frac{7}{10}$

Day 3: **0.60, 1.59, 1.99, 2.6, 3.9** Day 4: **3** + $\frac{1}{4}$; $\frac{1}{4}$ + $\frac{1}$

Day 5: **2.1 hours**

Week 4

Day 1: The picture should represent $\frac{3}{5}$ or $\frac{1}{5}$ of 3; $\frac{3}{5}$

Day 2: 13 × 7 ____ 18 × 5

Day 3: 250 m

Day 4: 598 square meters

Day 5: Answers may vary. A possible answer is: A sun's ray is a real-world example of a ray.

